Increase of Fungal Pathogenicity and Role of Plant Glutamine in Nitrogen-Induced Susceptibility (NIS) To Rice Blast
نویسندگان
چکیده
Highlight Modifications in glutamine synthetase OsGS1-2 expression and fungal pathogenicity underlie nitrogen-induced susceptibility to rice blast. Understanding why nitrogen fertilization increase the impact of many plant diseases is of major importance. The interaction between Magnaporthe oryzae and rice was used as a model for analyzing the molecular mechanisms underlying Nitrogen-Induced Susceptibility (NIS). We show that our experimental system in which nitrogen supply strongly affects rice blast susceptibility only slightly affects plant growth. In order to get insights into the mechanisms of NIS, we conducted a dual RNA-seq experiment on rice infected tissues under two nitrogen fertilization regimes. On the one hand, we show that enhanced susceptibility was visible despite an over-induction of defense gene expression by infection under high nitrogen regime. On the other hand, the fungus expressed to high levels effectors and pathogenicity-related genes in plants under high nitrogen regime. We propose that in plants supplied with elevated nitrogen fertilization, the observed enhanced induction of plant defense is over-passed by an increase in the expression of the fungal pathogenicity program, thus leading to enhanced susceptibility. Moreover, some rice genes implicated in nitrogen recycling were highly induced during NIS. We further demonstrate that the OsGS1-2 glutamine synthetase gene enhances plant resistance to M. oryzae and abolishes NIS and pinpoint glutamine as a potential key nutrient during NIS.
منابع مشابه
Characterization and Phylogenetic Analysis of Magnaporthe spp. strains on Various Hosts in Iran
Background: Populations of Magnaporthe, the causal agent of rice blast disease, are pathotypically and genetically diverse and therefore their interaction with different rice cultivars and also antagonistic microorganisms are very complicated. Objectives: The objectives of the present study were to characterize phylogenetic relationships of 114 native Magnaporthe strains, isolated from rice a...
متن کاملانتقال ژنهای مقاوم به بلاست Pi-1 و Pi-2به برنج رقم طارم دیلمانی
Rice cultivar Tarom Dilamani becauded a fragrance, flavor, cooking and marketing is a qualitative rice in Iran. This cultivar have high susceptibility against blast disease (Magnaporthe grisea). One of the important trouble producers of the Dilamani's rice cultivar is chemical control against blast disease and cause poisonous pollution of natural environment. The best manner in order to control...
متن کاملHost-Induced Gene Silencing of Rice Blast Fungus Magnaporthe oryzae Pathogenicity Genes Mediated by the Brome Mosaic Virus
Magnaportheoryzae is a devastating plant pathogen, which has a detrimental impact on rice production worldwide. Despite its agronomical importance, some newly-emerging pathotypes often overcome race-specific disease resistance rapidly. It is thus desirable to develop a novel strategy for the long-lasting resistance of rice plants to ever-changing fungal pathogens. Brome mosaic virus (BMV)-induc...
متن کاملRegulatory Genes Controlling MPG1 Expression and Pathogenicity in the Rice Blast Fungus Magnaporthe grisea.
MPG1, a pathogenicity gene of the rice blast fungus Magnaporthe grisea, is expressed during pathogenesis and in axenic culture during nitrogen or glucose limitation. We initiated a search for regulatory mutations that would impair nitrogen metabolism, MPG1 gene expression, and pathogenicity. First, we developed a pair of laboratory strains that were highly fertile and pathogenic toward barley. ...
متن کاملThe reaction of 109 rice lines to blast disease
Shahbazi H, Tarang A, Padasht F, Hosseini Chaleshtari M, Allah-Gholipour M, Khoshkdaman M, Mousavi Qaleh Roudkhani SA, Nazari Tabak S, Asadollahi Sharifi F, Pourabbas Dolatabad M (2022) The reaction of 109 rice lines to blast disease. Plant Pathology Science 11(1):24-35. Doi: 10.2982/PPS.11.1.24. Introduction: Blast caused by Pyricularia oryzae is the most important fungal disease of ri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2017